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Abstract. We examine general aspects of parity functions arising in rational conformal field
theories, as a result of Galois theoretic properties of modular transformations. We focus more
specifically on parity functions associated with affine Lie algebras, for which we give two efficient
formulae. We investigate the importance of these for the modular invariance problem.

1. Introduction

Modular invariance has become a major tool in the ambitious programme of classifying all
rational conformal field theories (RCFTs). At genus one, modular invariance is the requirement
that a RCFT can be put on a torus in a consistent way, so that, for example, the partition
function should be well defined over the conformal classes of tori [1]. Since the seminal
ADE classification of the Wess–Zumino–Novikov–Witten (WZNW) models based onsu(2)
[2], there has been much progress on this question, especially during the last few years, which
have seen arithmetical techniques come into play. In particular, the technical analysis of the
conditions expressing the modular invariance of the partition function on the torus has shown
that the use of Galois theory leads to powerful restrictions. These restrictions are now usually
referred to as parity selection rules. They have had a crucial role in various classification
results, that of thesu(3)-based WZNW being amongst the most convincing [3].

This paper is devoted to the study of general properties of the parity selection rules
corresponding to the best known RCFTs, namely the WZNW models. We will be more
general and consider theories with symmetry algebras given by isomorphic chiral affine Lie
algebras.

After reviewing the basics of the modular invariance problem and the technical questions
associated with it in the case of affine Lie algebras, we present in section 3 two new explicit
formulae for the parities which serve us as starting points for the results that follow. The first of
these expresses the parities in a given algebra as products of parities in the simplest one, namely
su(2). For obvious reasons, we call it a multiplicative formula. The second formula, which we
call additive, is perhaps more surprising, as it allows us to compute the affine parities through
modular arithmetics on the Dynkin labels of weights. In terms of computational efficiency,
these formulae are easier to use than the existing ones. We elaborate on them in the last two
sections.

§ Chercheur Qualifíe FNRS.
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In section 4, we consider the multiplicative formula, and show that the parity selection
rules amount to check whether the product of two specificS-matrix elements, namelyS0,iS0,j ,
is totally positive (see section 4 for a definition). Relying on this, we then proceed to construct
solutions to the selection rules via the use of trigonometric (cyclotomic) identities. We argue
that these solutions are generic albeit not exhaustive. For reasons explained there, their use for
the modular invariance problem remains difficult.

We explore in section 5 the consequences of the second, additive formula. We show that
the parity selection rules can be turned into algebraic equations in a finite ring. This approach
comes close to deeper arithmetical quantities like the generalized Bernoulli numbers, but
appears to point to deep arithmetical problems. However, in our opinion, this path looks
more promising despite the technical obstacles. A reason for this is that the problem can
be divided into two parts. One is entirely concerned with arithmetical questions (related to
number theoretic properties of cyclotomic extensions), while the other depends on which
specific algebra is being treated. Since the first part seems to be the more difficult, we hope
that this approach could lead to the solution of the parity selection rules for more than one
affine algebra.

As the parity functions are naturally cohomological objects, the appendix collects certain
results concerning the cohomology that is appropriate to them. Among other things, we
prove identities relating the parity functions pertaining to different affine Lie algebras (mainly
su(2N + 1) parities withsu(2N) parities).

2. Preliminaries and notation

We first fix the notation regarding affine Lie algebras (referring to [4] for further details) and
recall their modular properties. We denote byG a finite simple Lie algebra. The untwisted
level k affine algebrâGk based onG is generated byG-valued currentsJ (z) satisfying the
following commutation rules

[〈T a, J (z)〉, 〈T b, J (w)〉] = 〈[T a, T b], J (z)〉δ(z− w) + k〈T a, T b〉∂zδ(z− w) (2.1)

where{T a} is a set of generators forG. Whenk > 0 is an integer, the algebrâGk has a finite
number of unitary irreducible representationsL(p), labelled by the strictly dominant weights
of G in the alcovePn++(G)

P n++(G) =
{
p = (a1, a2, . . .) : ai > 0, and

∑
i

k∨i ai < n

}
(2.2)

wherek∨i are the Kac labels given by the decomposition of the highest root into simple roots
ψ =∑i k

∨
i αi and where we have setn = k +h∨ with h∨ = % ·ψ + 1 the dual Coxeter number

of G and% is half the sum of the positive roots. The normalization of the scalar product is such
thatψ2 = 2. In the following we will almost exclusively use the integern, called the height,
instead ofk. We letχp(τ) be the specialized character ofL(p).

The alcovePn++ is an affine Weyl chamber, that is, it is the quotient of the weight lattice
of G minus the union of all affine walls by the action of the affine Weyl groupŴn(G) of height
n. Since the affine Weyl transformationsŵ have well defined parity, one can associate to any
weightp a numberεn(G;p) as follows

εn(G;p) =


0 if p is in an affine wall

+1 if ŵ(p) ∈ Pn++ for an evenŵ

−1 if ŵ(p) ∈ Pn++ for an oddŵ.

(2.3)
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For obvious reasons,εn(G;p) will be called the affine parity ofp (relative toŴn(G)). It is
well defined on the weight lattice on account of the fact thatŴn(G) fixes the set of affine walls,
and has a free action elsewhere. It satisfies the following properties

εn(G; ŵ(p)) = (detŵ) εn(G;p)
εn(G;p + nα∨) = εn(G;p) for any co-rootα∨. (2.4)

The Hilbert space of a conformal theory with symmetry algebraĜk × Ĝk consists of
representationsL(p)⊗ L(p′) taken with certain multiplicitiesNp,p′

H =
⊕
p,p′

Np,p′(L(p)⊗ L(p′)) Np,p′ ∈ N. (2.5)

When the theory is put on a torus of modulusτ , the partition function takes the form [1]

Z(τ, τ ∗) =
∑
p,p′

Np,p′χp(τ)χ
∗
p′(τ ). (2.6)

Since two tori with moduliτ and(aτ + b)/(cτ + d) for
(
a b

c d

) ∈ PSL(2,Z), are conformally
equivalent, a consistency condition is that the partition function must be modular invariant, that
is,Z(τ) = Z((aτ + b)/(cτ + d)). The modular groupPSL(2,Z) is generated byτ → τ + 1
andτ →−1/τ , it is sufficient to check the invariance ofZ(τ) under these two substitutions.

For affine Lie algebras, it is known that the characters carry a linear representation of the
modular group [4] (the same is true of all known RCFTs, although no general proof exists).
Explicitly, one has

χp(τ + 1) =
∑
p′
Tp,p′χp′(τ ) χp(−1/τ) =

∑
p′
Sp,p′χp′(τ ) (2.7)

with T andS both symmetric and unitary.T is diagonal with roots of unity on the diagonal,
while S is more complicated. The crucial property for what follows is thatS, like T , has all
its entries in a cyclotomic extension of the rationals (if one assumes the existence of unitary
matricesS andT , this is in fact true in any RCFT, as proved in [5]). This implies that the
algebraic extensionM ≡ Q(Sp,p′) generated by the coefficients ofS is a Galois extension with
Abelian Galois group.M contains the subfieldL ≡ Q(Sp,p′/Sp,%), of whichM is at most a
quadratic extension (byS%,%). The action onS of the Galois group ofM is particularly simple.
Takeσ ∈ Gal(M/Q). It has been shown [5] thatσ induces a permutation of the weights in
Pn++, such that

σ(Sp,p′) = εσ (p)Sσ(p),p′ = εσ (p′)Sp,σ(p′) εσ (p) ∈ {±1}. (2.8)

BecauseS2
p,p′ ∈ L, the permutation ofPn++ induced byσ is determined only through its

restriction to Gal(L/Q). The numbersεσ (p), called Galois parities, are not representations of
the Galois group, but rather co-cycles, satisfyingεσσ ′(p) = εσ (σ

′(p))εσ ′(p). They are the
central objects of this paper. In a general RCFT, the relations (2.8) are still valid if we takep

andp′ as labels for the setP of primary fields.
If one inserts the modular transformations of the characters in the partition function (2.6),

requiring its modular invariance, one obtains the condition that the matrixN must commute
with T andS (one assumes also that the characters can be fully disentangled by additional
Cartan variables or by a discrete charge). Then by acting with an elementσ of the Galois
group ofM on the equation [N, S] = 0, one obtains the important result that

Nσ(p),σ (p′) = εσ (p)εσ (p′)Np,p′ . (2.9)

The parity selection rules now follow from the requirement that the coefficients ofN must be
positive integers

εσ (p)εσ (p
′) = −1 for someσ in Gal(M/Q) H⇒ Np,p′ = 0. (2.10)
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On the other hand, ifεσ (p)εσ (p′) = +1 for all σ , thenNp,p′ can be non-zero, in which case
we say that there is a coupling betweenp andp′.

Therefore, in order to know whichNp,p′ can be non-zero and which are to vanish, it is
of paramount importance to solve the parity equation, i.e. to know all pairs of weights(p, p′)
that satisfy

εσ (p) = εσ (p′) for all σ. (2.11)

This equation is the key ingredient to most classification results, but is notoriously hard to
solve.

These selection rules hold in any RCFT in which the characters transform in a unitary
representation of the modular group. They put very strong restrictions on the multiplicities of
the representations (of whichever algebra is present) that build the Hilbert space and thus on
the field content of the theory. Note that they have a purely group theoretical origin, as the
parity functions are completely determined once the chiral algebras hence the characters are
chosen. In case the left and right chiral algebras are not isomorphic, restrictions like (2.10)
apply, if appropriate parity functions are used. We end this introductory section by making
these functions explicit for affine Lie algebras.

In the case of affine Lie algebras, it is known thatS is equal to [4]

Sp,p′ = γ (G, n)
∑

w∈W(G)
(detw) e−2iπp·w(p′)/n. (2.12)

with W the finite Weyl group andγ (G, n) a numerical constant. The numbersSp,p′ belong
to the cyclotomic extensionQ(ζnQ)—ζm will denote a primitivemth root of unity—for some
integerQ depending onG (and possibly onn, see [9, 10]). The elements of Gal(M/Q) are
indexed by integersh co-prime withnQ, i.e. by elements ofZ∗nQ. The Euler functionϕ(nQ)
gives the order ofZ∗nQ.

From the formula forSp,p′ , it is not difficult to compute the permutation of the alcove
induced byσh: σh(p) is the only weight in the alcove whose image by an affine Weyl
transformation is the dilated weighthp (multiplication component-wise). In other words, there
exists a uniquewh,p ∈ W(G)and a unique co-rootα∨h,p ofG such thatσh(p) = wh,p(hp)+nα∨h,p.
Moreover, the Galois parity becomes

εσh(p) =
σh(γ (G, n))
γ (G, n)

εn(G;hp) (2.13)

which is an affine parity up to a constant prefactor (itself a sign because [γ (G, n)]2 ∈ Q).
Since this prefactor does not depend onp, it clearly drops out of the selection rules (2.10)—it
would, however, matter if the chiral algebras were not isomorphic—so we neglect it from now
on (except in the appendix). Therefore, the parity equation for affine Lie algebras takes the
form

εn(G;hp) = εn(G;hp′) ∀h ∈ Z∗nQ. (2.14)

Note that the maph 7−→ σh(γ (G, n))/γ (G, n) = ±1 is an homomorphism, so that the affine
parity εn(G;hp) itself is a co-cycle.

An algorithm to compute the parity of an arbitrary weight can be given, that requires
evaluating congruences on Dynkin labels and determinants of permutations (see [6] for
G = A`). It is not our purpose to describe that algorithm in the general case, since, as
we shall soon see,G parities can be reduced to the much simplersu(2) parities, which we now
make explicit.

In the Dynkin basis, ansu(2) weight is just an integer and the weight lattice isZ. The
dual Coxeter number ish∨ = 2 so that the alcove at heightn is the set

Pn++(su(2)) = {a ∈ Z : 16 a 6 n− 1}. (2.15)
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The affine walls are the points of the idealnZ. The co-roots correspond to even integers, which
implies that the parity function ofsu(2) is periodic with period 2n. Therefore, it only depends
on the residue modulo 2n of its argument, which we denote by〈a〉2n, taken between 0 and
2n− 1. (More generally, we denote by〈x〉y the residue ofx moduloy, chosen in [0, y − 1].)
Putting this together, we find for any integera

εn(a) ≡ εn(su(2); a) =


0 if a = 0 modn

+1 if 〈a〉2n < n

−1 if 〈a〉2n > n.

(2.16)

This is confirmed by computing directly the action of the Galois group on theS matrix, given
for su(2) by Sa,a′ = (2/n)1/2 sin(πaa′/n). For later use, we collect the main properties of the
su(2) parity

εn(a) = sgn

(
sin

πa

n

)
= 2− 〈a〉2n + 〈n− a〉2n

n
a 6∈ nZ (2.17)

εn(a) = εn(n− a) = εn(a + 2n) = −εn(−a). (2.18)

To summarize, the main conclusion, as far as affine Lie algebras are concerned, is that
Galois parities coincide with affine parities. Solving the parity equation (2.14) is nonetheless
extremely hard, which explains why the general solution is known forsu(2)† andsu(3) only.
For su(2), the result is fairly simple, even though the proof is not completely straightforward,
despite the deceptive simplicity of the parity function. In the case ofsu(3), the parity equation
is considerably more complex and it is only recently that the general solution has been given
[7], though in a totally different context. As noticed in [6], thesu(3) parity plays a fundamental
role in the description of the Jacobian varieties of the complex Fermat curves and it is in this
geometric setting that, in disguise, the equation forsu(3) was solved in all generality (see [8]
for a review of the connections between the two problems). Thesu(3) solution yields, as a
special case, the solution for thesu(2) case. For higher rank algebras, virtually nothing is
known about the parity equation.

It is our purpose here to suggest new directions, by showing that some of the properties
that proved very useful for thesu(2) andsu(3) algebras, in fact go over to other cases.

One may also note that focusing onsu(2) parities is not only important for dealing with
parities arising in affine algebras, they turn out to be relevant in other models as well. Good
examples are provided by minimal conformal theoriesM(p, q), in which the Galois parities
are just products of twosu(2) parities, taken at heightsp andq. Because theS matrices in
rational conformal theories are often related to sine functions,su(2) parities inevitably emerge
when acting with the Galois groups. This should be no surprise as most known rational theories
can be constructed as cosets of WZNW models.

3. Formulae for parities

We will present in this section two explicit formulae to compute the parity functions in affine
algebras. They have very different qualities, one being multiplicative, the other additive.
Perspectives offered by these formulae are investigated in subsequent sections.

The first, multiplicative, formula relates the parity in any (untwisted) affine algebra to
the parity function in the simplest of all, namelysu(2). Forp a weight ofG, not necessarily

† At the time the classification of affinesu(2) modular invariant partition functions was completed [2], the Galois
symmetry of theS matrix had not yet been recognized and consequently there was no parity equation. The now
available general solution of thesu(2) parity equation would yield the result in a more efficient way.
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dominant, the following formula yields an expression for the parity ofp relative to the affine
Weyl groupŴn(G)

εn(G;p) =
∏

rootsα>0

εnD(su(2);Dα · p) =
∏
α>0

sgn

(
sin

πα · p
n

)
(3.1)

whereD is the smallest positive integer such thatDα · p ∈ Z for all weightsp and all roots
α. Explicitly D = 1 for G simply-laced,D = 2 for G = B`, C`, F4 andD = 3 for G = G2.

The proof of the product formula (3.1) is not difficult. One may first check that both
expressions coincide whenp is in the fundamental alcovePn++(G) (clear becausep in the
alcove impliesα · p ∈ [1, n − 1]), and then verify that they have the same transformation
properties under the affine Weyl group. For the translational part, one uses, for any co-rootα∨

εn(G;p + nα∨)
εn(G;p) =

∏
α>0

εnD(Dα · p + nDα · α∨)
εnD(Dα · p) =

∏
α>0

(−1)α·α
∨ = (−1)2%·α

∨ = +1. (3.2)

For the finite Weyl part, one checks∏
α>0

εnD(Dα · w(p)) =
∏
α>0

εnD(Dw
−1(α) · p)

= (−1)tw
∏
α>0

εnD(Dα · p) = (detw)
∏
α>0

εnD(Dα · p) (3.3)

with tw the number of positive roots whose image underw are negative roots.
Alternatively one may obtain the formula (3.1) by acting with an element of the Galois

group Gal(M/Q) on the factorized form for theS matrix elements

S%,p(G) = γ ′(G, n)
∏
α>0

S%,α·p(su(2)) (3.4)

for some constantγ ′ that only depends onG andn.
Our second formula is additive and has a stronger arithmetical character. According to the

previous, multiplicative expression, parity functions in affine algebras are products ofsu(2)
paritiesεn(α ·p) (say whenD = 1). As mentioned before, thesesu(2) parities depend on the
residues of their argument modulo 2n. However, in the particular caseG = su(3), the parity
function, a product of threesu(2) parities according to (3.1)

εn(su(3);p) = εn(a)εn(b)εn(a + b) = εn(a)εn(b)εn(n− a − b) p = (a, b) (3.5)

can also be written in a way that only involves residues modulon. Indeed one may check that

εn(su(3);p) =
{

+1
−1

}
⇐⇒ 〈a〉n + 〈b〉n + 〈n− a − b〉n =

{
n

2n

}
. (3.6)

Since this additive formula proved extremely useful to solve the parity equation forsu(3)
[7, 11], it is natural to see if it can be generalized. It can indeed be generalized, though not
uniformly for all algebras, the resulting formulae being dependent of the structure of the root
systems. They are primarily based on the following basic observation.

Lemma 1. Suppose thatx1, x2, . . . , xm are integers inZ\nZ satisfying
∑

i xi = δnmod 2n,
with δ = 0, 1. Then

εn(x1)εn(x2) . . . εn(xm) = (−1)δ
{

+1
−1

}
iff

∑
i

〈xi〉n =
{

0
n

}
mod 2n. (3.7)



Parity functions in conformal field theories 3561

Proof. Let µ be the number of indicesi such thatεn(xi) = −1. Since for thoseis,
〈xi〉n = 〈xi〉2n − n, we obtain the following equalities modulo 2n∑

i

〈xi〉n =
∑
i

〈xi〉2n − µn = (δ +µ)nmod 2n. (3.8)

On the other hand,
∏
i εn(xi) = (−1)µ, which proves the lemma. �

This simple result is the key to the generalization of (3.6). Let us first consider the algebras
su(N), forN odd. Recall that a positive rootα of su(N) has level|α| = l if α is the sum ofl
simple roots, and that the set of positive roots has the property that

∑
|α|=l α =

∑
|α|=N−l α.

For a weightp = (a1, a2, . . . , aN−1), the product formula (3.1) implies that the affine
parity ofp is the product ofsu(2) paritiesεn(α ·p) over all positive roots. One can then satisfy
the hypothesis of lemma 1 by replacingεn(p ·α) by εn(n−p ·α) for all positive roots of level
bigger or equal to(N + 1)/2. Doing so, we obtain

εn(su(N);p) =
∏
α>0|α|6(N−1)/2

εn(p · α)
∏
α>0|α|>(N+1)/2

εn(n− p · α) N odd. (3.9)

The relevant value ofδ is given by the number of positive roots whose level is bigger or equal
to (N + 1)/2, namelyδ = (N2 − 1)/8 mod 2. Thus, the lemma yields the following.

Proposition 1. For N > 3 odd, one has

εn(su(N);p) = (−1)(N
2−1)/8

{
+1
−1

}
iff

∑
α>0|α|6(N−1)/2

〈p · α〉n +
∑
α>0|α|>(N+1)/2

〈n− p · α〉n =
{

0
n

}
mod 2n. (3.10)

ForN = 3, it reproduces (3.6) because the sum〈p · α1〉n + 〈p · α2〉n + 〈n−p · (α1 +α2)〉n
can only take two values,n or 2n.

The same trick does not always work for other algebras, because it relies on the fact that
the positive roots can be partitioned into two sets such that the sum of the roots in one set
equals the sum of the roots in the other set. In fact, it is not so much the roots which matter,
but their scalar products withp. So the condition underlying this proposition is the existence
of two disjoints setsA andB such that

∑
α∈A α · p =

∑
α∈B α · p. When this is not possible,

there are two alternatives. Either one constrains the weightp so that it is possible, or one
takes suitable multiples of the heightn. We illustrate it insu(4), which is the simplest case
for which this occurs.

Forp = (a, b, c) a general weight ofsu(4), the product formula yields

εn(su(4);p) = εn(a)εn(b)εn(c)εn(a + b)εn(b + c)εn(a + b + c). (3.11)

One checks that ifp is generic, there is no way to change some of the arguments as before,
in such a way that they sum to a multiple ofn. It is, however, possible ifp is self-conjugate,
a = c, since by insertingε2

n(a) = 1, one has

εn(su(4);p) = εn(b)εn(2a + b)ε2
n(a) = εn(a)εn(a)εn(b)εn(n− 2a − b). (3.12)

A simple application of the lemma implies, for a self-conjugate weightp = (a, b, a), that

εn(su(4);p) = +1 iff 2〈a〉n + 〈b〉n + 〈n− 2a − b〉n = nmod 2n. (3.13)
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If one wishes to keep a generic weight, the other way to proceed is to use the
obvious identity εn(x) = ε2n(2x) and then to insertε2

2n(a)ε
2
2n(c) = 1 in (3.11)

εn(su(4);p)=ε2n(2a)ε2n(2b)ε2n(2c)ε2n(2a + 2b)ε2n(2b + 2c)ε2n(2a + 2b + 2c)ε2
2n(a)ε

2
2n(c)

= ε2n(2a)ε2n(2b)ε2n(2c)ε2n(2a + 2b)ε2n(c)ε2n(c)

×ε2n(2n− 2b − 2c)ε2n(2n− 2a − 2b − 2c)ε2n(2n− a)ε2n(2n− a). (3.14)

The lemma can be used once more to relate the affine parity of a generalsu(4) weight to a
sum of residues modulo 2n. The price to pay is the larger number of residues that now enter
the formulae.

For the othersu(N) algebras,N even, the first alternative (self-conjugate weights) works
if N = 0 mod 4, while the second works well for allN even. Similar formulae can be designed
for all other simple Lie algebras.

In the following two sections, we present some implications of the above multiplicative
and additive formulae.

4. Totally positive numbers

For affine Lie algebras, the parity equation (2.14) requires that we determine the pairs of
weightsp, p′ that satisfy the following parity equation

εn(G;hp)εn(G;hp′) =
∏
α>0

εn(α · hp)εn(α · hp′) = +1 for all h in Z∗nD. (4.1)

From the formula (2.17), this is equivalent to solving

σh

(∏
α>0

sin
πα · p
n

sin
πα · p′
n

)
=
∏
α>0

sin
πhα · p
n

sin
πhα · p′

n
> 0 ∀h ∈ Z∗nD. (4.2)

In other words, the positive algebraic real number within the brackets on the left-hand side must
be such that its Galois conjugates are all positive. Such numbers are called totally positive.
The previous equation can thus be interpreted by saying thatp, p′ ∈ P++(G) satisfy the parity
rule iff S%,pS%,p′ is totally positive.

Obviously, sums, products and ratios of totally positive numbers are totally positive. A
classical theorem about totally positive numbers is due to Landau and Hilbert (see, e.g. [12]).

Theorem 1. A real algebraic numberξ is totally positive if and only if it is a sum of squares
in Q(ξ).

Proof. If ξ is a sum of squares, it is immediate that it is totally positive. Conversely, we assume
thatξ is totally positive. LetP(x) be the minimal polynomial ofξ

P (x) = xn − a1x
n−1 + a2x

n−2 + · · · + (−1)nan. (4.3)

Then the rational numbersai are all non-negative. The conditionP(ξ) = 0 can be written

ξ(an−1 + an−3ξ
2 + · · ·) = an + an−2ξ

2 + · · · . (4.4)

We setν = an−1 + an−3ξ
2 + · · · and observe thatν 6= 0 by the minimality ofP(x). Then we

have

ξ = 1

ν2
(an−1 + an−3ξ

2 + · · ·)(an + an−2ξ
2 + · · ·) = 1

ν2
(b0 + b1ξ

2 + · · ·) (4.5)

wherebi are positive rationals. Since a positive rational is easily seen to be a sum of rational
squares, the proof is complete. �
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Thus, in order to solve the parity equation for affine algebras, we look for products of
sines, in even number, which can be written as sums of squares inQ(sin(π/n)).

For n an integer andd a divisor ofn, the identity 1− Xd = ∏d−1
j=0(1− ζ jd X) implies a

number of product relations labelled by an integera

sin
πad

n

d−1∏
j=0

sin
π(a + jn/d)

n
= 21−d

(
sin

πad

n

)2

d | n 16 a 6 d − 1. (4.6)

The right-hand side is manifestly totally positive and so is the left-hand side

σh

(
sin

πad

n

d−1∏
j=0

sin
π(a + jn/d)

n

)
> 0. (4.7)

In order to convert this statement into identities involving parities, one simply remembers that
sin(πx/n) lies inQ(ζ4n)†, so that the Galois group acts on it by

σh

(
sin

πx

n

)
= iσh(−i) sin

πhx

n
= iσh(−i)εn(hx) sin

π〈hx〉n
n

. (4.8)

Thus, the positivity of a Galois conjugate is not only determined by ansu(2) parity, but can
be affected by a sign iσh(−i). These signs (which depend onh) drop out whenσh acts on an
even number of sines, but otherwise give extra contributions when the number of sines is odd.

If d is odd, the number of sines is even, and (4.7) leads to identities betweensu(2) parities

Rn(d, a) ≡ εn(had)
d−1∏
j=0

εn(ha + hjn/d) = +1 ∀h ∈ Z∗n, d odd. (4.9)

If d is even, we multiply the identity (4.6) by a positive rational sine, say sin(πf/n) ∈ Q,
thereby preserving the total positivity. The resulting identities now involve an even number of
sines and can be turned into identities among parities

Rn(d, a, f ) ≡ εn(hf )εn(had)
d−1∏
j=0

εn(ha + hjn/d) = +1 ∀h ∈ Z∗n, d even. (4.10)

The allowed valuesf = n/2, n/6 and 5n/6 are the only rationals such that sin(πf/n) is a
strictly positive rational number.

Thus, we have succeeded in writing many identitiesRn(d, a) andRn(d, a, f ) involving
su(2) parities, which can be used to give solutions to the parity equation in affine algebras.
Here the main problem is precisely to recast these identities in the form (4.1), in which the
arguments of the parities are related to the weightsp, p′ in a very specific way. It is nevertheless
instructive to see how the known solutions of the parity equation can be understood in terms
of these relations.

First, because the parity function forG is a product of parities forsu(2), one can solve
the parity equation (4.1) by equatingεn by pairs. These rather trivial solutions can lead
to non-trivial couplings in terms of the weights, and it turns out that many apparently non-
trivial couplings are in fact trivial in this sense. For instance insu(5), it was found in [6],
and checked the hard way, that the identityp = (1, 1, 1, 1) can couple, for evenn, to the
following three weightsp′ = (1, (n/2) − 2, (n/2) − 2, 1), ((n/2) − 3, 1, 1, (n/2) − 3) and
((n/2)− 3, 2, 2, (n/2)− 3). To see that these three weights indeed satisfy the parity equation
with p amounts to verifying, respectively, the identities

εn(2h)εn(n− 2h)εn(4h)εn(n− 4h) = +1 ∀h (4.11)

εn(4h)εn(n− 4h) = +1 ∀h (4.12)

εn(2h)εn(n− 2h) = +1 ∀h (4.13)

† Indeed, sin(πx/n) = − 1
2 i(ζ x2n − ζ−x2n ) = − 1

2(ζ
2x+n
4n − ζ−2x+n

4n ).
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simple consequences of the symmetry (2.18) of the functionεn. These three couplings appear
in thesu(5) exceptional invariants due to conformal embeddings, at heightsn = 8, 10 and 12.

Many of the allowed couplings which are not trivial in the sense of the previous paragraph
follow from the relations (4.9) and (4.10). For instance insu(3) at heightn, the coupling of
(1, 1) to (1, (n/2)) is allowed due to the identity

εn(h)εn(2h)εn(nh/2)εn((nh/2) + h) = +1 (4.14)

which is the identityRn(2, 1, n/2). Similarly the coupling of(1, 2) to (2, (n/3) − 1) is a
consequence ofRn(3, 1). Aoki [7] has determined, for all integersn except 32 values between
3 and 180, all pairsp, p′ of su(3) weights which satisfy the parity equation. His result shows
that, besides the trivial solutions, all the others follow from the identities (4.9) and (4.10) and
products thereof. The same pattern holds in higher rank algebras and points to the genericity
of the solutions provided by these identities. That they do not exhaust the solutions follows
from a concrete example: insu(3) at heightn = 15, the weights(1, 1) and(1, 5) are allowed
to couple, due to the identity

ε15(h)ε15(2h)ε15(5h)ε15(6h) = +1 (4.15)

which does not seem to follow from the product relationsRn.
The use of these to solve parity equations for affine algebras remains a delicate matter, as

subtle cancellations among individual parities must occur. A good (but still mild) illustration
of this is provided bysu(4) at heightn = 14, where there is a coupling between(1, 1, 1)
and(1, 2, 7), due to three mechanisms: cancellations of pairs of identicalεn, the symmetry
εn(x) = εn(n− x) and the relationR14(2, 2, 7).

5. Bernoulli numbers

In this section, we propose a second approach, based on the additive formulae of section 3. It
is not entirely new, since the corresponding formula (3.6) forsu(3)was at the root of the works
of Aoki [7] and Koblitz and Rohrlich [11]. With the additive formulae developed in section 3,
the method can be extended to any affine algebra. The new feature that appears when one goes
beyondsu(2) andsu(3), is the presence of congruences (all expressions are valued in a finite
ring). As we shall see, this is the source of difficult arithmetical problems, which somehow
embody the difficulties inherent to high-rank algebras.

Our purpose here is not to report on the results we have obtained so far by following this
approach, since they are not conclusive at the moment. They do, however, suggest that this
path is well suited for dealing with higher algebras. Here we will briefly explain the method
and give an indication of the problems that arise. A detailed and more complete account will
appear elsewhere.

The parity equation, expressing the equality of a number of paritiesεn(G;hp) =
εn(G;hp′), is what we want to solve. The additive formulae, like those of proposition 1
in section 3, give an expression for each of these parities as a sum of residues modulo some
integer. Thus, the typical problem is to find, for given and fixedn, all integersxi, yi satisfying∑

i

〈hxi〉n =
∑
i

〈hyi〉n mod 2n ∀h ∈ Z∗n. (5.1)

The integersxi, yi will eventually be related to the weightsp andp′ through their scalar
products with positive roots ofG (and so are not all independent).

The basic idea is to write equation (5.1) in the basis of characters ofZ∗n, so we begin by
recalling these.
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Characters modulon are homomorphisms of the multiplicative groupZ∗n, i.e. they are
multiplicative functionsθ , satisfyingθ(hh′) = θ(h)θ(h′) for all h, h′ ∈ Z∗n and of norm equal
to 1. In concrete terms, if we writeZ∗n = ×iZmi as a product of cyclic groups, every element
can be uniquely expressed ash =∏i g

ti
i , with gi a generator ofZmi . An arbitrary character is

labelled by a set of integersai , adopting modulomi , and takes the simple form

θ(h) = ζ a1t1
m1
ζ a2t2
m2

. . . 06 ai 6 mi − 1. (5.2)

The character is even or odd depending on whetherθ(−1) = +1 or−1. If all mi are chosen
to be even integers, a character being even or odd means

∑
i ai = 0 or 1 modulo 2.

A character ofZ∗n may be extended toZn (the set of all integers modulon), by setting
θ(t) = 0 if t is not inZ∗n. If n | N , it may be further lifted toZN by periodicity modulon
(not forgetting the co-primality condition†), in which case we say that the resulting character
of ZN is induced by a character ofZn. A character ofZn is called primitive if it is not induced
by a character of a subgroup ofZn. A character modulon is said to have conductorf if it
is induced by a primitive character modulof (sof | n). Loosely speaking, a character of
conductorf truncates its argument modulof and so the conductor of a character is its period.

Let us come back to the parity equation (5.1). It states that∑
i

〈hxi〉n −
∑
i

〈hyi〉n = 2nF(h | xi, yi) (5.3)

for some integral functionF . Because〈−x〉n = n−〈x〉n, the left-hand side is an odd function
of h, and so isF . Multiplying by θ(h), a character modulon, and summing overh yields zero
if θ is an even character, while it gives a multiple of 2 ifθ is odd‡. One obtains∑

i

∑
h∈Z∗n
〈hxi〉nθ(h)−

∑
i

∑
h∈Z∗n
〈hyi〉nθ(h) = 0 mod 4n. (5.4)

The change from a congruence modulo 2n to one modulo 4n is crucial for what follows.
It is important to realize that equation (5.4) takes place in the ring of integers of the

cyclotomic extensionQ(ζϕ(n)) (containing the values ofθ ). Thus, the congruence involved is
a condition in the finite ringZ(ζϕ(n))/(4n). By previous remarks, it is identically satisfied ifθ
is an even character, so from now on, we concentrate on the odd ones.

Equation (5.4) is a sum of terms of the form
∑

h〈hx〉nθ(h). Let us first compute this
number whenx is co-prime withn (invertible modulon). For convenience, we include a factor
1/n, and obtain, by a simple change of variable

1

n

∑
hmodn

〈hx〉nθ(h) = 1

n

∑
t modn

〈t〉nθ(x−1t) = θ∗(x)Bn1,θ (5.5)

whereBn1,θ is a generalized Bernoulli number (see [13])

Bn1,θ =
1

n

n∑
t=1

tθ(t). (5.6)

If x is not co-prime withn, the calculation is only slightly more complicated. If we set
GCD(x, n) = n/e andx̃ = x/(n/e) (so thatx̃ is co-prime withe), a short calculation shows
that for a character modulon of conductorf , the sum is equal to

1

n

∑
hmodn

〈hx〉nθ(h) =
 0 if f - e
ϕ(n)

ϕ(e)
Be1,θ θ

∗(x̃) if f | e. (5.7)

† For instance, the character modulo 3 defined byθ(1) = 1, θ(2) = −1, can be extended modulo 6 by setting
θ(1) = 1, θ(5) = −1.
‡ By this is meant that

∑
h F (h | xi , yi )θ(h) is an algebraic integer, lying in the principal ideal (2) of some cyclotomic

integer ring.
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Using these results, the parity equation in the form (5.4) is a congruence modulo 4 (we
have divided byn) for a sum of terms comprising Bernoulli numbers, various factors related to
GCDs, and values of characters. Instead of writing the complete equation in the general case,
which does not pose a problem other than its notation, we take a simple example, and write it
explicitly in the case ofsu(4).

To simplify, we take insu(4) two self-conjugate weights(a, b, a) and (a′, b′, a′), and
assume thata, b,2a + b, a′, b′, 2a′ + b′ are all co-prime withn (this last assumption simplifies
the notation, but is actually the most difficult situation). From (3.13), the congruences to solve
are simple to write out

1
2B

n
1,θ [2θ

∗(a) + θ∗(b)− θ∗(2a + b)− 2θ∗(a′)− θ∗(b′) + θ∗(2a′ + b′)] = 0 mod 2

for all oddθ. (5.8)

Solving them requires looking more closely at the Bernoulli numbers.
As it turns out, Bernoulli numbers have received considerable attention for decades,

because of the extremely important role they play in algebraic number theory. It would be an
impossible task for us to review their properties. Instead, we will mention, without proof†,
those which we feel are relevant for our problem.

A first observation is that the congruence (5.8) is between algebraic integers. The reason
is very simple. The first congruence, equation (5.1), is the equality of two sums of residues,
which are equal to 0 or tonmodulo 2n (as follows from the lemma of section 3). However, since
in any case, they are both equal to 0 modulon, the congruence (5.1) is in fact trivial modulo
n. When multiplied byθ(h) and summed overh, it yields (5.4), which must, therefore, be
identically satisfied modulo 2n. This means that equation (5.8) is identically satisfied modulo
1, i.e. that the left-hand side is an algebraic integer. Thus, the non-trivial part is entirely
contained in a congruence modulo 2.

Technically, this observation is reflected by specific properties of the Bernoulli numbers
Bn1,θ . Indeed, one can show that most of them are not only algebraic integers [14], despite the
factor 1/n in their definition, but are also equal to 0 modulo 2. In other words, many numbers
1
2B

n
1,θ are integral. The precise conditions under which this is true are not simple to state, but

a sufficient condition is that the conductor ofθ should not be a prime power‡.
Whenθ is such that12B

n
1,θ is integral, equation (5.8) simplifies further to become

1
2B

n
1,θ [θ

∗(b) + θ∗(2a + b) + θ∗(b′) + θ∗(2a′ + b′)] = 0 mod 2. (5.9)

The main difficulty that arises when one tries to solve equations like (5.8) or the previous
one, is to calculate the GCD of1

2B
n
1,θ and 2. Clearly the most favourable case is when the two

numbers are co-prime, because one can then divide by1
2B

n
1,θ and study the conditions under

which the sum of characters vanishes. Although that part may not be straightforward, we think
it should be tractable, since it is merely a matter of having a certain sum of roots of unity that
vanishes. Even if exotic solutions can occur, the generic solutions are expected to be the trivial
ones, namelya′ = a andb′ = b (up to some automorphisms).

To see if half the Bernoulli numbers are co-prime with two, and if not, to calculate their
GCD, is much more delicate. Even worse is the fact that they can vanish (as complex numbers).
Indeed a standard identity gives the Bernoulli numbers associated to non-primitive characters

† For some of the results mentioned in the text, we have provided our own proof, although we have no doubt that
they can be found somewhere in the mathematical literature.
‡ A particular instance where it is not true is whenn is a power of an odd primep. ThenBn1,θ is not integral, but there
is a unique prime idealπ in Q(ζϕ(f )), lying abovep, such thatπBn1,θ is integral. In this situation, the triviality of the
congruence modulon is fulfilled because the various characters in (5.8) add up to something equal 0 moduloπ .
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in terms of those pertaining to primitive characters. Ifθ has conductorf and if θ0 is the
character modulof that inducesθ , then the formula is [13]

Bn1,θ = Bf1,θ0

∏
primep|n

(1− θ0(p)). (5.10)

It is known that Bernoulli numbers associated with primitive characters are non-zero as complex
numbers, soBf1,θ0

6= 0, but the product over the prime divisors ofnmay force a zero (this can
only happen ifn is not a prime power). As to the congruence modulo 2,1

2B
n
1,θ can have a

common divisor with 2, either because1
2B

f

1,θ0
has one, or because(1−θ0(p))divides 2 for some

p. All these questions lead to rather non-trivial arithmetical problems in cyclotomic extensions.
It is, however, intriguing to note that the generalized Bernoulli numbers appear in a

remarkable formula expressing what is called the relative class numberh− of cyclotomic
fields. If hn andh+

n denote, respectively, the class number† ofQ(ζn) andQ(cos(2π/n)), the
relative class number ofQ(ζn) is their quotient,h−n = hn/h+

n. This number, also an integer,
can be computed from the formula [13]

h−n = Q̃n
∏
θodd

primitive

(− 1
2B

n
1,θ ) (5.11)

whereQ̃ is a numerical factor, equal to 1 ifn is a power of 2, 2 ifn is a odd prime power or if
n is even, and 4 otherwise. From this formula, one can see that to determine the GCD of1

2B
n
1,θ

and 2 amounts to say something about the power of 2 that divides the relative class number of
cyclotomic fields. In this respect, Iwasawa’s theory ofZp-extensions could provide some help.

Certainly, one cannot hide the fact that hard and maybe deep problems lie on the way
towards the solution of the parity equation. However, one should emphasize that these
problems, mostly concerned with Bernoulli numbers, are not specific to thesu(4) situation
that we chose as illustration. If one follows the approach presented here, be it insu(4) or in
another algebra, one ends up with equations like (5.8) or (5.9), the solution of which requires
basically two steps. One involves the Bernoulli numbers themselves, more precisely their
modular properties; the other is an equation where certain values of characters add up to zero.
Only this second part depends on which algebra we treat and which kind of weights. The first
part is universal, algebra independent. This may be a happy coincidence as it is probably more
difficult.

We can illustrate this by displaying the analogous equation‡ forsu(8), at height
n. We make the same assumptions as forsu(4), namely we take two self-conjugate
weights(a, b, c, d, c, b, a) and(a′, b′, c′, d ′, c′, b′, a′). As before, we assume that all linear
combinations of the Dynkin labels that appear are coprime withn. Then the equivalent of (5.9)
involves a sum of only eight characters
1
2B

n
1,θ [θ

∗(d) + θ∗(2c + d) + θ∗(2b + 2c + d) + θ∗(2a + 2b + 2c + d) + same primed]= 0

mod 2 (5.12)

valid for all odd characters which are such that1
2B

n
1,θ is integral.

† If K is a number field, i.e. a finite algebraic extension ofQ, the fractional ideals ofK form an Abelian group, where
the identity is just the ring of integers ofK. One defines an equivalence relation by saying that two idealsα and
β are equivalent ifαβ−1 is principal (generated by a single element ofK). The quotient of the group of ideals by
this relation is a finite group, called the ideal class group. Its order is the class number ofK and is among the most
important numbers characterizingK.
‡ Interestingly, if we take two self-conjugate weights ofsu(5), we obtain the same equation as forsu(4) (with b
replaced by 2b): the two weights(a, 2b, a) and(a′, 2b′, a′) satisfy the parity equation forsu(4) if (a, b, b, a) and
(a′, b′, b′, a′) satisfy the parity equation forsu(5). One easily convinces oneself that the same holds within all pairs
of algebrassu(4`) andsu(4` + 1), if one restricts to self-conjugate weights.
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Without minimizing the difficulties, we believe that it is a very positive and encouraging
feature of the approach presented here.
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Appendix. Cohomological interpretations

In this appendix we study the parity functions as cohomological objects. We feel and hope that
the cohomological interpretation can be useful in the future. In particular, we derive a formula
relating the affine parities indifferentalgebras, that has a strong cohomological flavour.

The parities, defined in the text by (2.8), satisfy the composition law

εσσ ′(j) = εσ (j)εσ ′(σ (j)) = εσ ′(j)εσ (σ ′(j)) (A.1)

whereσ, σ ′ ∈ Gal(M/Q), andj labels the elements ofP, the finite set of chiral primary fields.
The second equality follows from the fact that Gal(M/Q) is Abelian. We begin by reviewing
some definitions of group cohomology, for which we adopt a multiplicative notation.

LetG be a group andA be a multiplicative Abelian group. Assume thatG acts onA by
automorphisms, i.e. there is a homomorphismα : G→ Aut(A). For simplicity we writeg · a
instead ofα(g)(a), whereg ∈ G, a ∈ A. The setCn(G,A) of n-co-chains is the Abelian
group of functions which depend onn variables inG and with values inA

Cn(G,A) = {f : G× · · · ×G︸ ︷︷ ︸
n factors

→ A}. (A.2)

By definition, a 0-co-chain is a fixed element ofA, so thatC0(G,A) = A. One also defines
co-boundary operatorsδn : Cn→ Cn+1, which, forn = 0, 1, are given explicitly by

(δ0(a))(g) = (g · a)a−1 g ∈ G a ∈ A, (A.3)

(δ1(f ))(g, h) = (g · f (h))f (g)f (gh)−1 f ∈ C1(G,A) g, h ∈ G. (A.4)

The group of 1-co-boundaries isB1(G,A) = Im(δ0), whereas the group of 1-co-cycles is
Z1(G,A) = ker(δ1). It is easy to see thatδ1 ◦ δ0 = 1, soB1(G,A) ⊂ Z1(G,A). The first
cohomology group is thenH 1(G,A) = Z1(G,A)/B1(G,A).

Now consider a RCFT with the finite setP of primary fields. TakeA = {+1,−1}P to be the
multiplicative Abelian group of functions:P → {+1,−1} (multiplication componentwise) and
takeG = Gal(M/Q). As recalled in the introduction,G acts onP by permutationsj 7→ σ(j),
and thus also onA by (σ · a)(j) = a(σ (j)). The first equality in (A.1) then translates into the
property that the mapε : G→ A defined byσ 7→ εσ (·) is a 1-co-cycle inC1(G,A).

Proposition 2. If ε is a co-boundary,M = L.

Proof. We know that Gal(M/L) is the kernel of the restriction Gal(M/Q) → Gal(L/Q),
therefore, ifσ ∈ Gal(M/L), σ(Sij ) = εσ (i)Sij , since the permutation ofP induced byσ is
determined by its restriction to Gal(L/Q). By the assumption onε, εσ (i) = a(σ (i))/a(i), for
somea ∈ A, thusεσ (i) = 1 if σ ∈ Gal(M/L). Henceσ(Sij ) = Sij for all σ ∈ Gal(M/L). �
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Examples of RCFTs whereε is a co-boundary include all models with the current algebra
su(N2) at level 1. For these cases one easily checks thatεσ (p) = +1 for all σ and allp in
the alcove, and indeedS%,% = 1/N impliesM = L(S%,%) = L. (Note thatεσ (·) is the full
parity defined in (2.8) and not the affine parityεn(G; ·).) The converse is, however, not true:
in models with current algebrasu(2) at even level, it is known thatM = L (see [9]) butε is
never a co-boundary†.

For j ∈ P, we denote byGj = {σ ∈ G | σ(j) = j} the stabilizer ofj . Note that
sinceG is Abelian,Gj = Gk if j andk belong to the same orbitO of G in P, thus it makes
sense to define the stabilizer of an orbitO byGO = Gj with j ∈ O. Let ĜO be the group of
homomorphismsGO → {+1,−1}.
Proposition 3. There is a group homomorphismH 1(G,A) ↪→∏

O ĜO, where the product is
over all the orbitsO.

The proof of proposition 3 is based on the following lemma.

Lemma 2. ε is a co-boundary if and only if for allj ∈ P and allσ ∈ Gj , εσ (j) = 1.

Proof. If we assume thatε is a co-boundary, then it is obvious thatεσ (j) = 1 if σ(j) = j .
Assume now thatεσ (j) = 1 for all σ ∈ Gj . We have to construct a functiona(j) such that
εσ (j) = a(σ (j))/a(j).

First we observe that the co-cycle condition (A.1) implies thatεσσ ′(j) = εσ (j) if σ ′ ∈ Gj .
Thus, if we restrictj to lie in a certain orbitO, εσ (j) depends only onσmodGO and we can
think of σ as lying inG/GO.

Let us choose one particular elementj0 as the origin ofO. Everyj ∈ O can be written
in a unique way asj = σ · j0 for someσ ∈ G/GO. We define the restriction ofa to O by
a(j) = εσ (j0). From (A.1) we get

εσσ ′(j0) = εσ ′(j0)εσ (σ
′ · j0) (A.5)

so that upon settingk = σ ′ · j0, we get

εσ (k) = εσσ ′(j0)/εσ ′(j0) = a(σ (k))/a(k). (A.6)

�

Proof of proposition 3. We consider the second equality in (A.1) and assuming thatσ ∈ Gj ,
we obtainεσ (j) = εσ (σ ′ · j). Therefore, ifσ ∈ GO, εσ (·) is constant onO. Denoting this
constant byεσ (O) it is easy to see from (A.1) again, thatσ 7→ εσ (O) belongs tôGO. Thus,
we now have a map

%̃ : Z1(G,A)→
∏
O
ĜO. (A.7)

The easy direction of the lemma says thatB1(G,A) ⊂ ker(%̃), so that%̃ descends to a map

% : H 1(G,A)→
∏
O
ĜO (A.8)

and the other direction says that in factB1(G,A) = ker(%̃), so that% is injective. �

† The field extensionsM andL have been determined in [10] for the current algebras based onsu(N). Many of them
haveL =M.
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We finish by mentioning another product formula, relating the affine parities ofsu(2N)
andsu(2N + 1). Formally, the formula says that the affine parity ofsu(2N + 1) is like the
co-boundary of the affine parity ofsu(2N), both algebras taken at the same height

εn(su(2N + 1); (a1, a2, . . . , a2N)) = ‘ δ2N−1εn(su(2N); ·) ’ (A.9)

= εn(su(2N); (a2, . . . , a2N))

2N−1∏
i=1

εn(su(2N); (a1, . . . , ai + ai+1, . . . , a2N))

×εn(su(2N); (a1, . . . , a2N−1)). (A.10)

It is only a formal co-boundary since, onZ2N−1, the parityεn(su(2N); ·) takes the values
{0,+1,−1}, which is not a multiplicative group. Nevertheless, in terms of affine parities, it
yields an identity whose proof is straightforward: the two expressions are equal to +1 when
p = (a1, a2, . . . , a2N) is in the alcovePn++(su(2N +1)) and they transform the same way under
the affine Weyl group̂Wn(su(2N + 1)). At this level of generality, these identities seem to be
specific to theAl series, even if other relations can be found. For instance, thesu(5) parity for
a general weight is the product of foursu(3) parities, while aG2 parity is the product of two
su(3) parities.
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