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Abstract. We examine general aspects of parity functions arising in rational conformal field
theories, as a result of Galois theoretic properties of modular transformations. We focus more
specifically on parity functions associated with affine Lie algebras, for which we give two efficient
formulae. We investigate the importance of these for the modular invariance problem.

1. Introduction

Modular invariance has become a major tool in the ambitious programme of classifying all
rational conformal field theories (RCFTs). Atgenus one, modular invariance is the requirement
that a RCFT can be put on a torus in a consistent way, so that, for example, the partition
function should be well defined over the conformal classes of tori [1]. Since the seminal
ADE classification of the Wess—Zumino—Novikov—-Witten (WZNW) models basech¢®)

[2], there has been much progress on this question, especially during the last few years, which
have seen arithmetical techniques come into play. In particular, the technical analysis of the
conditions expressing the modular invariance of the partition function on the torus has shown
that the use of Galois theory leads to powerful restrictions. These restrictions are now usually
referred to as parity selection rules. They have had a crucial role in various classification
results, that of theu (3)-based WZNW being amongst the most convincing [3].

This paper is devoted to the study of general properties of the parity selection rules
corresponding to the best known RCFTs, namely the WZNW models. We will be more
general and consider theories with symmetry algebras given by isomorphic chiral affine Lie
algebras.

After reviewing the basics of the modular invariance problem and the technical questions
associated with it in the case of affine Lie algebras, we present in section 3 two new explicit
formulae for the parities which serve us as starting points for the results that follow. The first of
these expresses the parities in a given algebra as products of parities in the simplest one, namely
su(2). For obvious reasons, we call it a multiplicative formula. The second formula, which we
call additive, is perhaps more surprising, as it allows us to compute the affine parities through
modular arithmetics on the Dynkin labels of weights. In terms of computational efficiency,
these formulae are easier to use than the existing ones. We elaborate on them in the last two
sections.
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In section 4, we consider the multiplicative formula, and show that the parity selection
rules amount to check whether the product of two spesifiatrix elements, namelSp ; So, ;,
is totally positive (see section 4 for a definition). Relying on this, we then proceed to construct
solutions to the selection rules via the use of trigonometric (cyclotomic) identities. We argue
that these solutions are generic albeit not exhaustive. For reasons explained there, their use for
the modular invariance problem remains difficult.

We explore in section 5 the consequences of the second, additive formula. We show that
the parity selection rules can be turned into algebraic equations in a finite ring. This approach
comes close to deeper arithmetical quantities like the generalized Bernoulli numbers, but
appears to point to deep arithmetical problems. However, in our opinion, this path looks
more promising despite the technical obstacles. A reason for this is that the problem can
be divided into two parts. One is entirely concerned with arithmetical questions (related to
number theoretic properties of cyclotomic extensions), while the other depends on which
specific algebra is being treated. Since the first part seems to be the more difficult, we hope
that this approach could lead to the solution of the parity selection rules for more than one
affine algebra.

As the parity functions are naturally cohomological objects, the appendix collects certain
results concerning the cohomology that is appropriate to them. Among other things, we
prove identities relating the parity functions pertaining to different affine Lie algebras (mainly
su(2N + 1) parities withsu(2N) parities).

2. Preliminaries and notation

We first fix the notation regarding affine Lie algebras (referring to [4] for further details) and
recall their modular properties. We denote & finite simple Lie algebra. The untwisted
level k affine algebra@c based org is generated by-valued currents/(z) satisfying the
following commutation rules

[T, J (@), (T, Jw)] = ([T T"], J(2))8(z — w) +k(T*, T")3,8(z — w) (2.1)

where{T“} is a set of generators fgr. Whenk > 0 is an integer, the algeb@ has a finite
number of unitary irreducible representatidng), labelled by the strictly dominant weights
of G in the alcoveP!, (G)

P!(G) = {p = (ay, az,...) . a; > 0, and Zki\/ai < n} (2.2)

wherek,” are the Kac labels given by the decomposition of the highest root into simple roots
¥ = ), k’a; and where we have set= k +h" with 1" = ¢ - + 1 the dual Coxeter number
of G andp is half the sum of the positive roots. The normalization of the scalar product is such
thaty? = 2. In the following we will almost exclusively use the integercalled the height,
instead ofk. We lety,(r) be the specialized characterofp).

The alcoveP’, is an affine Weyl chamber, that is, it is the quotient of the weight lattice
of G minus the union of all affine walls by the action of the affine Weyl grﬁh,pg) of height
n. Since the affine Weyl transformatiofishave well defined parity, one can associate to any
weight p a numbet, (G; p) as follows

0 if p isin an affine wall
£,(G;p) =1 +1 if w(p) € PP, for an everw (2.3)
-1 if w(p) € PP, for an oddw.
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For obvious reasons, (G; p) will be called the affine parity op (relative toWw, @). ltis
well defined on the weight lattice on account of the fact thatg) fixes the set of affine walls,
and has a free action elsewhere. It satisfies the following properties
en(G; W(p)) = (detw) &,(G; p)
£, (G; p+na’) =¢&,(G; p) for any co-root". (2.4)
The Hilbert space of a conformal theory with symmetry alge@ra< G consists of
representations (p) ® L(p’) taken with certain multiplicitiesv,, .

H=EP N, (Lp)® L) N,y €N, (2.5)
p.p'
When the theory is put on a torus of modulyshe partition function takes the form [1]
Z(t. 7 =Y Ny xp(@) X (1) (2.6)
p.p'

Since two tori with modulir and(at +b)/(ct +d) for (¢ 3) e PSL(2,7), are conformally
equivalent, a consistency condition is that the partition function must be modular invariant, that
is, Z(t) = Z((at +b)/(ct +d)). The modular grouPSL(2, Z) is generated by — 7 +1
andt — —1/t, itis sufficient to check the invariance 4f(r) under these two substitutions.

For affine Lie algebras, it is known that the characters carry a linear representation of the
modular group [4] (the same is true of all known RCFTSs, although no general proof exists).
Explicitly, one has

Xp@+D = "T,pxpy (@™ xp(=1/T) =Y Sy pxp (1) 2.7)
4 P

with 7" and.S both symmetric and unitaryl” is diagonal with roots of unity on the diagonal,
while S is more complicated. The crucial property for what follows is thalike 7', has all

its entries in a cyclotomic extension of the rationals (if one assumes the existence of unitary
matricesS and T, this is in fact true in any RCFT, as proved in [5]). This implies that the
algebraic extensioll = Q(S,, /) generated by the coefficients His a Galois extension with
Abelian Galois groupM contains the subfieltl. = Q(S,,,//S,,,), of whichM is at most a
quadratic extension (by, ,). The action or$ of the Galois group ol is particularly simple.
Takeo e Gal(M/Q). It has been shown [5] that induces a permutation of the weights in
P, such that

G(Sp,17’) =& (p)So(p),p’ =& (p/)Sp,a(p’) Eo (P) € {il} (28)

BecauseSf,’p, € L, the permutation ofP}, induced byo is determined only through its
restriction to GallL/Q). The numbers, (p), called Galois parities, are not representations of
the Galois group, but rather co-cycles, satisfying (p) = ¢, (o’(p))e,(p). They are the
central objects of this paper. In a general RCFT, the relations (2.8) are still valid if we take
andp’ as labels for the s of primary fields.

If one inserts the modular transformations of the characters in the partition function (2.6),
requiring its modular invariance, one obtains the condition that the méitrixust commute
with T and S (one assumes also that the characters can be fully disentangled by additional
Cartan variables or by a discrete charge). Then by acting with an elemeithe Galois
group ofM on the equation¥, S] = 0, one obtains the important result that

Na(ﬂ),a(p’) = 8a(p)8a(p/)Np,p’- (29)

The parity selection rules now follow from the requirement that the coefficiemsrofist be
positive integers

es(p)es(p') = —1for somer in GalM/Q) =— N, , =0. (2.10)
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On the other hand, &, (p)e,(p') = +1 for all o, thenN,, ,, can be non-zero, in which case
we say that there is a coupling betwegand p’.

Therefore, in order to know whicl, ,, can be non-zero and which are to vanish, it is
of paramount importance to solve the parity equation, i.e. to know all pairs of weights)
that satisfy

g (p) = &5 () for all . (2.11)

This equation is the key ingredient to most classification results, but is notoriously hard to
solve.

These selection rules hold in any RCFT in which the characters transform in a unitary
representation of the modular group. They put very strong restrictions on the multiplicities of
the representations (of whichever algebra is present) that build the Hilbert space and thus on
the field content of the theory. Note that they have a purely group theoretical origin, as the
parity functions are completely determined once the chiral algebras hence the characters are
chosen. In case the left and right chiral algebras are not isomorphic, restrictions like (2.10)
apply, if appropriate parity functions are used. We end this introductory section by making
these functions explicit for affine Lie algebras.

In the case of affine Lie algebras, it is known tl§as equal to [4]

Sppy =v(G.n) Y (detw)e 2P, (2.12)
weW (G)
with W the finite Weyl group ang/(G, n) a numerical constant. The numbests,, belong
to the cyclotomic extensio@(¢,o)—¢» will denote a primitivemth root of unity—for some
integer Q depending org (and possibly om, see [9, 10]). The elements of G&I/Q) are
indexed by integers co-prime withn Q, i.e. by elements of; ,. The Euler functiorp(n Q)
gives the order oZ’ .

From the formula fors, ,, it is not difficult to compute the permutation of the alcove
induced byoy,: o5,(p) is the only weight in the alcove whose image by an affine Weyl
transformation is the dilated weighp (multiplication component-wise). In other words, there
existsaunique, , € W(G) and aunique co-rom;jp of Gsuchthat;, (p) = wh,p(hp)+na}zp.
Moreover, the Galois parity becomes

Eoy, (p) = M‘gn(g; hP) (213)
v(G,n)

which is an affine parity up to a constant prefactor (itself a sign becausk £)]° € Q).
Since this prefactor does not dependprit clearly drops out of the selection rules (2.10)—it
would, however, matter if the chiral algebras were not isomorphic—so we neglect it from now
on (except in the appendix). Therefore, the parity equation for affine Lie algebras takes the
form

(G hp) = €,(G; hp") Vh e Z,,- (2.14)
Note that the map — o, (y (G, n))/y (G, n) = £1 is an homomorphism, so that the affine
parity e,(G; hp) itself is a co-cycle.

An algorithm to compute the parity of an arbitrary weight can be given, that requires
evaluating congruences on Dynkin labels and determinants of permutations (see [6] for
G = A,). Itis not our purpose to describe that algorithm in the general case, since, as
we shall soon segj, parities can be reduced to the much simplgi2) parities, which we now
make explicit.

In the Dynkin basis, anu(2) weight is just an integer and the weight latticeZis The
dual Coxeter number i8” = 2 so that the alcove at heights the set

Pl(su@)={aeZ:1<a<n—-1}. (2.15)
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The affine walls are the points of the idedl. The co-roots correspond to even integers, which
implies that the parity function ofu(2) is periodic with period 2. Therefore, it only depends
on the residue modulor20f its argument, which we denote ky),,, taken between 0 and
2n — 1. (More generally, we denote Ry), the residue ok moduloy, chosenin [0y — 1].)
Putting this together, we find for any integer

0 if a = 0 modn
en(a) = e,(5u(2);a) =1 +1 if (a)o, <nm (2.16)
-1 if (a)2, > n.

This is confirmed by computing directly the action of the Galois group ors thmatrix, given
for su(2) by S, = (2/n)Y?sin(raa’/n). For later use, we collect the main properties of the
su(2) parity

£a(a) = sgn(sin ’;—“> =2- M adénZ (2.17)
en(a) =e,(n—a) =¢e,(a+ 2”) = —égy(—a). (218)

To summarize, the main conclusion, as far as affine Lie algebras are concerned, is that
Galois parities coincide with affine parities. Solving the parity equation (2.14) is nonetheless
extremely hard, which explains why the general solution is knowsif@@) T andsu (3) only.
Forsu(2), the result is fairly simple, even though the proof is not completely straightforward,
despite the deceptive simplicity of the parity function. In the case (8), the parity equation
is considerably more complex and it is only recently that the general solution has been given
[7], though in a totally different context. As noticed in [6], the(3) parity plays a fundamental
role in the description of the Jacobian varieties of the complex Fermat curves and it is in this
geometric setting that, in disguise, the equatiornsfai3) was solved in all generality (see [8]
for a review of the connections between the two problems). stti8) solution yields, as a
special case, the solution for the(2) case. For higher rank algebras, virtually nothing is
known about the parity equation.

It is our purpose here to suggest new directions, by showing that some of the properties
that proved very useful for the:(2) andsu(3) algebras, in fact go over to other cases.

One may also note that focusing em(2) parities is not only important for dealing with
parities arising in affine algebras, they turn out to be relevant in other models as well. Good
examples are provided by minimal conformal theorldgp, ¢), in which the Galois parities
are just products of tweu(2) parities, taken at heights andg. Because the& matrices in
rational conformal theories are often related to sine function®) parities inevitably emerge
when acting with the Galois groups. This should be no surprise as most known rational theories
can be constructed as cosets of WZNW models.

3. Formulae for parities

We will present in this section two explicit formulae to compute the parity functions in affine
algebras. They have very different qualities, one being multiplicative, the other additive.
Perspectives offered by these formulae are investigated in subsequent sections.

The first, multiplicative, formula relates the parity in any (untwisted) affine algebra to
the parity function in the simplest of all, namely(2). For p a weight ofG, not necessarily

T At the time the classification of affine:(2) modular invariant partition functions was completed [2], the Galois
symmetry of theS matrix had not yet been recognized and consequently there was no parity equation. The now
available general solution of the (2) parity equation would yield the result in a more efficient way.
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dominant, the following formula yields an expression for the parity oélative to the affine
Weyl groupW,(9)

@)= [] 8,1D(su(2);Da~p)=]_[Sgr(sinm'p> 3.1)

rootsa>0 a>0 n

where D is the smallest positive integer such thiat - p € Z for all weightsp and all roots
«. Explicitly D = 1 for G simply-laced,D = 2 forG = By, Cy, F4andD = 3 for G = G».

The proof of the product formula (3.1) is not difficult. One may first check that both
expressions coincide whem is in the fundamental alcové!,(G) (clear because in the
alcove impliese - p € [1,n — 1]), and then verify that they have the same transformation
properties under the affine Weyl group. For the translational part, one uses, for any ag-root

Sn(g; P +n05v) i 1—[ SnD(DC( - p +nDao - Olv)

£4(G: ) Dy LI =D =4l 32)

a>0 a>0
For the finite Weyl part, one checks
[ [eno(Der - wip)) =[] enp(Dw™ @) - p)
a>0 a>0
= (=1" [ [ewn (D - p) = (detw) [ [ eun(Da - p) (3-3)
a>0 a>0

with r,, the number of positive roots whose image undeare negative roots.
Alternatively one may obtain the formula (3.1) by acting with an element of the Galois
group GalM/Q) on the factorized form for th& matrix elements

Sor(@ =v'G.1) [ | Sep(su(2) (3.4)

a>0

for some constant’ that only depends o6 andn.

Our second formula is additive and has a stronger arithmetical character. According to the
previous, multiplicative expression, parity functions in affine algebras are productg2)f
paritiese, (« - p) (say whenD = 1). As mentioned before, these(2) parities depend on the
residues of their argument modula.2However, in the particular case= su(3), the parity
function, a product of three«(2) parities according to (3.1)

Sn(Sbt(3); P) = 811(“)8/1([7)8}1((1 + b) = Sn(a)gn(b)sn(n —a— b) P = ((l, b) (35)
can also be written in a way that only involves residues moduloadeed one may check that

en(su(3); p) = { i]i} = {(a),+b),+{n—a—->b), = {21111 } . (3.6)

Since this additive formula proved extremely useful to solve the parity equation @y
[7,11], it is natural to see if it can be generalized. It can indeed be generalized, though not
uniformly for all algebras, the resulting formulae being dependent of the structure of the root
systems. They are primarily based on the following basic observation.

Lemma 1. Suppose thats, x, ..., x,, are integers inZ\nZ satisfying) ", x; = n mod 2,
with§ =0, 1. Then

en(x1)&n(x2) ... €4 (X)) = (_:I-)(S { i::ll-_ } iff Z<Xi>n = { 2 } mod 2. (37)
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Proof. Let u be the number of indices such thate,(x;) = —1. Since for those's,
(x;), = (xi)2, — n, we obtain the following equalities modula 2

D (xide = (%i)ay — pn = (8 + pynmod 2. (3.8)
On the other hand,][; &, (x;) = (—1)*, which proves the lemma. O

This simple resultis the key to the generalization of (3.6). Let us first consider the algebras
su(N), for N odd. Recall that a positive roatof su(N) has levela| = [ if @ is the sum of
simple roots, and that the set of positive roots has the propertpthat, o = > ,,_y_; .

For a weightp = (a1, a, ..., ay_1), the product formula (3.1) implies that the affine
parity of p is the product ofu (2) paritiese, (« - p) over all positive roots. One can then satisfy
the hypothesis of lemma 1 by replacingp - «) by ¢,(n — p - ) for all positive roots of level
bigger or equal tgN + 1) /2. Doing so, we obtain

auN;pp= [] ep-o [[ e@tr-p-@)  Nodd (3.9)

a>0 a>0
le|<(N=-1)/2 la|Z(N+1)/2

The relevant value of is given by the number of positive roots whose level is bigger or equal
to (N +1)/2, namelys = (N? — 1)/8 mod 2. Thus, the lemma yields the following.

Proposition 1. For N > 3 odd, one has

en(su(N); p) = (—1)V=D/8 { ill}

iff Z (p-ajt Z (n—p-a)nz{g} mod 2. (3.10)

a>0 a>0
le|<(N-1)/2 la|Z(N+1)/2

For N = 3, itreproduces (3.6) because the symay), + (p - a2), +(n — p - (@1 +a2)),
can only take two values, or 2n.

The same trick does not always work for other algebras, because it relies on the fact that
the positive roots can be partitioned into two sets such that the sum of the roots in one set
equals the sum of the roots in the other set. In fact, it is not so much the roots which matter,
but their scalar products with. So the condition underlying this proposition is the existence
of two disjoints setsA andB suchtha) ,_,a-p =3, o - p. When this is not possible,
there are two alternatives. Either one constrains the weiga that it is possible, or one
takes suitable multiples of the height We illustrate it insu(4), which is the simplest case
for which this occurs.

For p = (a, b, ¢) a general weight ofu(4), the product formula yields

en(su(d); p) = e,(a)e,(b)e, (c)ey(a+b)e, (b +c)e,(a+b+c). (311)

One checks that ip is generic, there is no way to change some of the arguments as before,
in such a way that they sum to a multiplesoft is, however, possible ip is self-conjugate,
a = ¢, since by inserting?(a) = 1, one has

en(su(d); p) = &,(b)e,(2a + b)s,f(a) =¢,(a)e,(a)e,(b)e,(n — 2a — b). (3.12)
A simple application of the lemma implies, for a self-conjugate wejght (a, b, a), that

e, (su(d); p) = +1 iff 2(a), +(b),+{n —2a —b), =nmod . (3.13)
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If one wishes to keep a generic weight, the other way to proceed is to use the
obvious identity e,(x) = &2,(2x) and then to insertsgn(a)sgn(c) = 1 in (3.11)

en(su(d); p)=€2,(2a)e2,(2b)2,(2¢)e2,(2a + 2b)e2,(2b + 2¢)e2,(2a + 2b + 2¢)e2, (a)e2, (c)
= &2, (2a)e2,(2b)e2,(2¢) €2, (2a + 2b) &2, (c) €2, (C)
x€2,(2n — 2b — 2¢)e2,(2n — 2a — 2b — 2¢)e2,(2n — a)ez, (2n — a). (3.14)

The lemma can be used once more to relate the affine parity of a genétaweight to a
sum of residues modula2 The price to pay is the larger number of residues that now enter
the formulae.

For the othesu (N) algebras)N even, the first alternative (self-conjugate weights) works
if N = 0mod 4, while the second works well for &lleven. Similar formulae can be designed
for all other simple Lie algebras.

In the following two sections, we present some implications of the above multiplicative
and additive formulae.

4. Totally positive numbers

For affine Lie algebras, the parity equation (2.14) requires that we determine the pairs of
weightsp, p’ that satisfy the following parity equation

£, (G; hp)e,(G; hp') = l_[ eq(o - hp)e,(a - hp') = +1 forallhin Z} . (4.1)

a>0

From the formula (2.17), this is equivalent to solving

. mwa-p . mwa-p . wha-p . mwha-p'
sin sin = sin sin >0 YheZ:,. (4.2
Gh(l_[ n ) l_[ n nD ( )

n n

a>0 a>0

In other words, the positive algebraic real number within the brackets on the left-hand side must
be such that its Galois conjugates are all positive. Such numbers are called totally positive.
The previous equation can thus be interpreted by sayingthalte P..(G) satisfy the parity
rule iff S, , S, ,» is totally positive.

Obviously, sums, products and ratios of totally positive numbers are totally positive. A
classical theorem about totally positive numbers is due to Landau and Hilbert (see, e.g. [12]).

Theorem 1. A real algebraic numbes is totally positive if and only if it is a sum of squares

inQ(&).

Proof. If £ isa sum of squares, itis immediate that it is totally positive. Conversely, we assume
that¢ is totally positive. LetP (x) be the minimal polynomial of

P(x)=x"—aix" T+ apx" 2+ 4+ (=1)"a,. (4.3)
Then the rational numbets are all non-negative. The conditigh(&) = 0 can be written

E(an-1+a, 3%+ ) =ay +a, 27+ (4.4)
We setv = a,_1 +a,_3£2 + - - - and observe that # 0 by the minimality ofP(x). Then we
have

1 2 2 1 2

§= (a1 tan s+ )@yt a8+ ) = Sbo+biE?+ ) (45)
whereb; are positive rationals. Since a positive rational is easily seen to be a sum of rational
squares, the proof is complete. O
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Thus, in order to solve the parity equation for affine algebras, we look for products of
sines, in even number, which can be written as sums of squa@sin(z/n)).

Forn an integer and a divisor ofzn, the identity 1— X = ]_[’;;3(1 — 7 X) implies a
number of product relations labelled by an integer

d d—1 +in/d 2
sin 4 nsinn(a n/d) _ 21— (sinn—ad> dln 1<a<d-1 (4.6)
n i=0 n n
The right-hand side is manifestly totally positive and so is the left-hand side
d d—1 +in/d
oh(sin ma ]‘[sin”(“ jn/ )) -~ 0. (4.7)
n =0 n

In order to convert this statement into identities involving parities, one simply remembers that
sin(wx/n) lies inQ(¢4,)T, so that the Galois group acts on it by

. X ) . mwhx . .
op| sin— ) = liop(—1) sSin—— = io,(—1)e, (hx) SIn
n n

Thus, the positivity of a Galois conjugate is not only determined by:.&8) parity, but can
be affected by a sigj,(—i). These signs (which depend dhdrop out wherw;, acts on an
even number of sines, but otherwise give extra contributions when the number of sines is odd.
If d is odd, the number of sines is even, and (4.7) leads to identities betwédrparities
d-1
Ry(d.a) = g,(had) | | eatha + hjn/d) = +1 Vh e ZF, dodd  (4.9)
j=0
If d is even, we multiply the identity (4.6) by a positive rational sine, sagnsiin) € Q,
thereby preserving the total positivity. The resulting identities now involve an even number of
sines and can be turned into identities among parities

7 (hx)n

(4.8)

d—1
R,(d,a, f) = e,(hf)e,(had) 1—[ en(ha+hjn/d) = +1 Vh € 7, d even (4.10)
j=0
The allowed valueg = n/2,n/6 and = /6 are the only rationals such that 6iry/n) is a
strictly positive rational number.
Thus, we have succeeded in writing many identifgéd, a) andR,(d, a, f) involving
su(2) parities, which can be used to give solutions to the parity equation in affine algebras.
Here the main problem is precisely to recast these identities in the form (4.1), in which the
arguments of the parities are related to the weightg in a very specific way. Itis nevertheless
instructive to see how the known solutions of the parity equation can be understood in terms
of these relations.
First, because the parity function fgris a product of parities fosu(2), one can solve
the parity equation (4.1) by equating by pairs. These rather trivial solutions can lead
to non-trivial couplings in terms of the weights, and it turns out that many apparently non-
trivial couplings are in fact trivial in this sense. For instanceuiii5), it was found in [6],
and checked the hard way, that the identity= (1, 1, 1, 1) can couple, for even, to the
following three weighty’ = (1, n/2) — 2, (n/2) — 2,1), ((n/2) — 3,1, 1, (n/2) — 3) and
((n/2) -3, 2,2, (n/2) — 3). To see that these three weights indeed satisfy the parity equation
with p amounts to verifying, respectively, the identities

£, (20)e, (0 — 2h)en (Bh)en(n — 4h) = +1 Vh (4.11)
en(4h)e, (n — 4h) = +1 Vh (4.12)
en(2h)en(n — 2h) = +1 Vh (4.13)

1 Indeed, sitrx/n) = — 3155, — &) = — 5 @2 — £, 2.
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simple consequences of the symmetry (2.18) of the funetjoirhese three couplings appear

in thesu(5) exceptional invariants due to conformal embeddings, at heighkt$, 10 and 12.
Many of the allowed couplings which are not trivial in the sense of the previous paragraph

follow from the relations (4.9) and (4.10). For instanceit3) at heightr, the coupling of

(1, 1) to (1, (n/2)) is allowed due to the identity

en(h)en(2h)en(nh/2)e,((nh/2) + h) = +1 (4.14)

which is the identityR, (2, 1, n/2). Similarly the coupling of(1, 2) to (2, (n/3) — 1) is a
consequence @t, (3, 1). Aoki [7] has determined, for all integensexcept 32 values between

3 and 180, all pairp, p’ of su(3) weights which satisfy the parity equation. His result shows
that, besides the trivial solutions, all the others follow from the identities (4.9) and (4.10) and
products thereof. The same pattern holds in higher rank algebras and points to the genericity
of the solutions provided by these identities. That they do not exhaust the solutions follows
from a concrete example: i (3) at heights = 15, the weightg1, 1) and(1, 5) are allowed

to couple, due to the identity

e15(h)e15(2h)e15(5h)e15(6h) = +1 (4.15)

which does not seem to follow from the product relatidhs
The use of these to solve parity equations for affine algebras remains a delicate matter, as
subtle cancellations among individual parities must occur. A good (but still mild) illustration
of this is provided bysu(4) at heightn = 14, where there is a coupling betweéh 1, 1)
and(1, 2, 7), due to three mechanisms: cancellations of pairs of identjcghe symmetry
e, (x) = g,(n — x) and the relatiorR14(2, 2, 7).

5. Bernoulli numbers

In this section, we propose a second approach, based on the additive formulae of section 3. It
is not entirely new, since the corresponding formula (3.6} f@B) was at the root of the works

of Aoki [7] and Koblitz and Rohrlich [11]. With the additive formulae developed in section 3,

the method can be extended to any affine algebra. The new feature that appears when one goes
beyondsu(2) andsu(3), is the presence of congruences (all expressions are valued in a finite
ring). As we shall see, this is the source of difficult arithmetical problems, which somehow
embody the difficulties inherent to high-rank algebras.

Our purpose here is not to report on the results we have obtained so far by following this
approach, since they are not conclusive at the moment. They do, however, suggest that this
path is well suited for dealing with higher algebras. Here we will briefly explain the method
and give an indication of the problems that arise. A detailed and more complete account will
appear elsewhere.

The parity equation, expressing the equality of a number of paréjég; hp) =
e, (G; hp'), is what we want to solve. The additive formulae, like those of proposition 1
in section 3, give an expression for each of these parities as a sum of residues modulo some
integer. Thus, the typical problem is to find, for given and fixedll integersy;, y; satisfying

D (hxi)n = (hyi)a mod Vh € 7. (5.1)
The integersy;, y; will eventually be related to the weights and p’ through their scalar
products with positive roots @ (and so are not all independent).
The basic idea is to write equation (5.1) in the basis of charactef$,afo we begin by
recalling these.
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Characters module are homomorphisms of the multiplicative gro#y), i.e. they are
multiplicative functions®, satisfyingd (hh’) = 0(h)6 (k') for all h, i’ € Z; and of norm equal
to 1. In concrete terms, if we writé* = x;Z,,. as a product of cyclic groups, every element
can be uniquely expressed/as- [, g/, with g; a generator of,,,. An arbitrary character is
labelled by a set of integets, adopting modulan;, and takes the simple form

O(h) = ganget . 0<a <m— 1 (5.2)

s
The character is even or odd depending on whetlterl) = +1 or —1. If all m; are chosen
to be even integers, a character being even or odd meanas = 0 or 1 modulo 2.

A character ofZ* may be extended t@, (the set of all integers module), by setting
0@) =0ifrisnotinZ;. If n | N, it may be further lifted t&Zy by periodicity modulo:
(not forgetting the co-primality conditiont), in which case we say that the resulting character
of Zy is induced by a character @f,. A character oZ, is called primitive if it is not induced
by a character of a subgroup @f. A character modula is said to have conductof if it
is induced by a primitive character modufo(so f | n). Loosely speaking, a character of
conductorf truncates its argument modufoand so the conductor of a character is its period.

Let us come back to the parity equation (5.1). It states that

D (hxiyy — Y (hyida = 2nF (h | x;. 1) (5.3)
for some integral functio’. Becausé—x), = n — (x),, the left-hand side is an odd function
of h, and so isF'. Multiplying by 6 (h), a character module, and summing ovek yields zero
if 0 is an even character, while it gives a multiple of 2 i oddt. One obtains
DO thxiyab(h) =Y > (hyi)ab(h) =0 mod 4. (5.4)
i heZ: i heZ:

The change from a congruence modutot@ one modulo # is crucial for what follows.

It is important to realize that equation (5.4) takes place in the ring of integers of the
cyclotomic extensio)(¢,»)) (containing the values @f). Thus, the congruence involved is
a condition in the finite rin@.(¢, )/ (4n). By previous remarks, it is identically satisfiedif
is an even character, so from now on, we concentrate on the odd ones.

Equation (5.4) is a sum of terms of the form,, (hx),0 (k). Let us first compute this
number when is co-prime withn (invertible moduloz). For convenience, we include a factor
1/n, and obtain, by a simple change of variable

1 1
=3 (hx)b) == > (0,07 = 0% (x) By, (5.5)
n h modn n t modn
whereB] , is a generalized Bernoulli number (see [13])
1 n
Bl =~ PRTIGE (5.6)
=1

If x is not co-prime withr, the calculation is only slightly more complicated. If we set
GCD(x,n) = n/e andx = x/(n/e) (so thatx is co-prime withe), a short calculation shows
that for a character moduloof conductorf, the sum is equal to

1 0 if fte
= hx) by ={ o) o, : (5.7)
N odn MBLQQ (x) if f | e.
T For instance, the character modulo 3 defineddth) = 1, 6(2) = —1, can be extended modulo 6 by setting

(1) =1,6(5) = —1.
1 Bythisismeanttha}_, F(h | x;, y;)0(h) is an algebraic integer, lying in the principal ideal (2) of some cyclotomic
integer ring.
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Using these results, the parity equation in the form (5.4) is a congruence modulo 4 (we
have divided by:) for a sum of terms comprising Bernoulli numbers, various factors related to
GCDs, and values of characters. Instead of writing the complete equation in the general case,
which does not pose a problem other than its notation, we take a simple example, and write it
explicitly in the case ofu(4).

To simplify, we take insu(4) two self-conjugate weight&, b, a) and (a’, V', a’), and
assumethat, b, 2a +b, a’, b’, 24’ + b’ are all co-prime with: (this last assumption simplifies
the notation, but is actually the most difficult situation). From (3.13), the congruences to solve
are simple to write out

%B;{e[ze*(a) +0*(b) — 0" (2a +b) — 20*(a’) — 0*(b') +0* (24’ +b')] = Omod 2
for all odd6. (5.8)

Solving them requires looking more closely at the Bernoulli numbers.

As it turns out, Bernoulli numbers have received considerable attention for decades,
because of the extremely important role they play in algebraic number theory. It would be an
impossible task for us to review their properties. Instead, we will mention, without prooft,
those which we feel are relevant for our problem.

A first observation is that the congruence (5.8) is between algebraic integers. The reason
is very simple. The first congruence, equation (5.1), is the equality of two sums of residues,
which are equal to 0 or tomodulo 2: (as follows from the lemma of section 3). However, since
in any case, they are both equal to 0 moduléhe congruence (5.1) is in fact trivial modulo
n. When multiplied byo (k) and summed ovei, it yields (5.4), which must, therefore, be
identically satisfied modulor2 This means that equation (5.8) is identically satisfied modulo
1, i.e. that the left-hand side is an algebraic integer. Thus, the non-trivial part is entirely
contained in a congruence modulo 2.

Technically, this observation is reflected by specific properties of the Bernoulli numbers
B7 ,. Indeed, one can show that most of them are not only algebraic integers [14], despite the
factor 1/n in their definition, but are also equal to 0 modulo 2. In other words, many numbers
%B'f,o are integral. The precise conditions under which this is true are not simple to state, but
a sufficient condition is that the conductorghould not be a prime powert.

Whené is such tha%Big is integral, equation (5.8) simplifies further to become

1BY (6% (b) +6%(2a +b) +6* (b)) +0*(2a' +b)] =0 mod 2 (5.9)

The main difficulty that arises when one tries to solve equations like (5.8) or the previous
one, is to calculate the GCD éfBi’ﬁ and 2. Clearly the most favourable case is when the two
numbers are co-prime, because one can then divid%aﬁq;g and study the conditions under
which the sum of characters vanishes. Although that part may not be straightforward, we think
it should be tractable, since it is merely a matter of having a certain sum of roots of unity that
vanishes. Even if exotic solutions can occur, the generic solutions are expected to be the trivial
ones, namely’ = a andb’ = b (up to some automorphisms).

To see if half the Bernoulli numbers are co-prime with two, and if not, to calculate their
GCD, is much more delicate. Evenworse is the fact that they can vanish (as complex numbers).
Indeed a standard identity gives the Bernoulli numbers associated to non-primitive characters

T For some of the results mentioned in the text, we have provided our own proof, although we have no doubt that
they can be found somewhere in the mathematical literature.

1 Aparticular instance where it is not true is wheis a power of an odd primg. ThenBj , is notintegral, but there

is a unique prime ideat in Q(¢y(s)), lying abovep, such thatr BY , is integral. In this situation, the triviality of the
congruence modula is fulfilled because the various characters in (5.8) add up to something equal 0 modulo
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in terms of those pertaining to primitive characters.f Ihas conductorf and if 6y is the
character modulg that induce®, then the formula is [13]

B, =B{, [] @-6op). (5.10)
primep|n
Itis known that Bernoullinumbers associated with primitive characters are non-zero as complex
numbers, schﬁ0 # 0, but the product over the prime divisorsmofay force a zero (this can

only happen ifn is not a prime power). As to the congruence modulc%B”e can have a

common divisor with 2, either becau%B1 4, Nas one, or becausk—6o(p)) divides 2 for some
p. Allthese questions lead to rather non- trivial arithmetical problems in cyclotomic extensions.

It is, however, intriguing to note that the generalized Bernoulli numbers appear in a
remarkable formula expressing what is called the relative class nuimbef cyclotomic
fields. If b, andh’ denote, respectively, the class numberi®Qet,) andQ(cog2x/n)), the
relative class number d®(¢,) is their quotienth, = h,/h}. This number, also an integer,
can be computed from the formula [13]

hy =0n [] (=3B} (5.11)

fodd
primitive

where( is a numerical factor, equal to 1sfis a power of 2, 2 ifz is a odd prime power or if
n is even, and 4 otherwise. From this formula, one can see that to determine the GBP,of
and 2 amounts to say something about the power of 2 that divides the relative class number of
cyclotomic fields. In this respect, Iwasawa’s theorfgfextensions could provide some help.
Certainly, one cannot hide the fact that hard and maybe deep problems lie on the way
towards the solution of the parity equation. However, one should emphasize that these
problems, mostly concerned with Bernoulli numbers, are not specific teutt?® situation
that we chose as illustration. If one follows the approach presented here, be {@jnor in
another algebra, one ends up with equations like (5.8) or (5.9), the solution of which requires
basically two steps. One involves the Bernoulli numbers themselves, more precisely their
modular properties; the other is an equation where certain values of characters add up to zero.
Only this second part depends on which algebra we treat and which kind of weights. The first
partis universal, algebra independent. This may be a happy coincidence as it is probably more
difficult.
We can illustrate this by displaying the analogous equationtsfaB), at height
n. We make the same assumptions as fot4), namely we take two self-conjugate
weights(a, b, ¢, d, ¢, b,a) and(a’, b, ', d’, ', b', a’). As before, we assume that all linear
combinations of the Dynkin labels that appear are coprimeavitfhen the equivalent of (5.9)
involves a sum of only eight characters

%B'fﬁ[e*(d) +0*(2c +d) +60*(2b + 2c +d) +0*(2a + 2b + 2¢ + d) + same primed} 0
mod 2 (5.12)
valid for all odd characters which are such tgd , is integral.

T If Kis a number field, i.e. a finite algebraic extensiofothe fractional ideals dK form an Abelian group, where
the identity is just the ring of integers @&. One defines an equivalence relation by saying that two idealsd

B are equivalent itx8~1 is principal (generated by a single elementkgf The quotient of the group of ideals by
this relation is a finite group, called the ideal class group. Its order is the class nunibemafis among the most
important numbers characteriziftg

T Interestingly, if we take two self-conjugate weightssaf5), we obtain the same equation as fan(4) (with b
replaced by B): the two weightsa, 2b, a) and(a’, 2b', a’) satisfy the parity equation fon(4) if (a, b, b, a) and

(@', b, b, a) satisfy the parity equation fom (5). One easily convinces oneself that the same holds within all pairs
of algebrasu(4¢) andsu(4¢ + 1), if one restricts to self-conjugate weights.
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Without minimizing the difficulties, we believe that it is a very positive and encouraging
feature of the approach presented here.
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Appendix. Cohomological interpretations

In this appendix we study the parity functions as cohomological objects. We feel and hope that
the cohomological interpretation can be useful in the future. In particular, we derive a formula
relating the affine parities idifferentalgebras, that has a strong cohomological flavour.

The parities, defined in the text by (2.8), satisfy the composition law

€00 (J) = €6 ()Ex (0 () = &0 (J)ex (0" () (A.1)

whereo, ¢’ € Gal(M/Q), and; labels the elements &f, the finite set of chiral primary fields.
The second equality follows from the fact that @dl/Q) is Abelian. We begin by reviewing
some definitions of group cohomology, for which we adopt a multiplicative notation.

Let G be a group andi be a multiplicative Abelian group. Assume th@tacts onA by
automorphisms, i.e. there is a homomorphismG — Aut(A). For simplicity we writeg - a
instead ofu(g)(a), whereg € G, a € A. The setC"(G, A) of n-co-chains is the Abelian
group of functions which depend arvariables inG and with values imrA

C"(G,A)={f:Gx--xG— A). (A.2)
n factors

By definition, a 0-co-chain is a fixed element4f so thatC°(G, A) = A. One also defines
co-boundary operato#; : C* — C"*1, which, forn = 0, 1, are given explicitly by

(Bo(@))(g) = (g -a)a™t geG acA, (A.3)
Gu(g. ) = (g F)f(gf(gh)™ feckG,A) g.heG. (A.9)

The group of 1-co-boundaries B'(G, A) = Im(8p), whereas the group of 1-co-cycles is
ZYG, A) = ker(81). It is easy to see that o 5o = 1, SOBY(G, A) ¢ ZY(G, A). The first
cohomology group is theH (G, A) = ZX(G, A)/BY(G, A).

Now consider a RCFT with the finite setof primary fields. Taket = {+1, —1}” to be the
multiplicative Abelian group of functions? — {+1, —1} (multiplication componentwise) and
takeG = Gal(M/Q). Asrecalled inthe introductiorgy acts orP by permutationg — o (j),
and thus also oA by (o - a)(j) = a(o(j)). The first equality in (A.1) then translates into the
property that the map : G — A defined byo — ¢, (-) is a 1-co-cycle irC1(G, A).

Proposition 2. If ¢ is a co-boundaryM = L.

Proof. We know that GalM/LL) is the kernel of the restriction G&ll/Q) — Gal(L/Q),
therefore, ifoe € Gal(M/L), o(S;;) = &,(i)S;;, since the permutation ¢ induced byo is
determined by its restriction to G&l{Q). By the assumption ofy &, (i) = a(o (i))/a(i), for
somea € A, thuse, (i) = 1if o € Gal(M/L). Henceo (S;;) = S;; forall o € Gal(M/L). O
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Examples of RCFTs wheeeis a co-boundary include all models with the current algebra
su(N?) at level 1. For these cases one easily checksethiat) = +1 for all o and all p in
the alcove, and indee8, , = 1/N impliesM = L(S,,) = L. (Note thats, (-) is the full
parity defined in (2.8) and not the affine pariiy(G; -).) The converse is, however, not true:
in models with current algebra:(2) at even level, it is known thatl = L (see [9]) bute is
never a co-boundaryf.

Forj € P, we denote byG; = {0 € G | o(j) = j} the stabilizer ofj. Note that
sinceG is Abelian,G; = Gy if j andk belong to the same orhi? of G in P, thus it makes
sense to define the stabilizer of an odiby Gpo = G; with j € O. Let Go be the group of
homomorphism&» — {+1, —1}.

Proposition 3. There is a group homomorphisi! (G, A) < [], 50, where the product is
over all the orbitsO.

The proof of proposition 3 is based on the following lemma.

Lemma 2. ¢ is a co-boundary if and only if for alf ¢ P and allo € G}, &, (j) = 1.

Proof. If we assume that is a co-boundary, then it is obvious thgt(j) = 1 if o (j) = j.
Assume now that, (j) = 1 forallo € G;. We have to construct a functier(;) such that
eo(j) = a(o(j))/a(j).

First we observe that the co-cycle condition (A.1) implies tyat(j) = &, (j) if o’ € G;.
Thus, if we restrict; to lie in a certain orbit), ¢, (j) depends only oamodG» and we can
think of o as lying inG/Go.

Let us choose one particular elemggtas the origin of0. Everyj € O can be written
in a unique way ag = o - jo for somes € G/G». We define the restriction af to O by
a(j) = &, (jo). From (A.1) we get

Eaa’(jO) = 8(7’(j0)8a (O‘/ . ]0) (AS)

so that upon setting = o’ - jo, we get
o (k) = €54 (jo) /€6 (Jo) = alo(k))/a(k). (A.6)
O

Proof of proposition 3. We consider the second equality in (A.1) and assumingathaitG ;,

we obtaine, (j) = ¢,(c’ - j). Therefore, ifo € G, &, (-) is constant or0. Denoting this
constant by, (O) it is easy to see from (A.1) again, that— ¢,(O) belongs toGo. Thus,
we now have a map

8:24G. A) — [ ] Go. (A.7)
o
The easy direction of the lemma says tBatG, A) C ker(g), so thatp descends to a map
0:HYG.A) > [ Go (A.8)
O
and the other direction says that in f@&%(G, A) = ker(p), so thatp is injective. O

T The field extension8l andLL have been determined in [10] for the current algebras based(@h. Many of them
havelL = M.
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We finish by mentioning another product formula, relating the affine parities @N)
andsu(2N + 1). Formally, the formula says that the affine paritysa{2N + 1) is like the
co-boundary of the affine parity of:(2N), both algebras taken at the same height

en(Su(2N +1); (a1, az, ..., azy)) ="' Son-16,(su(2N); )’ (A.9)
2N-1
= £,(su@N); (a2, ..., a)) [ | en(su@N); (a1, ..., @ +aisa, ..., azy))
i=1
x&,(Su(2N); (az, ..., asn_1)). (A.10)

It is only a formal co-boundary since, ¢V ~1, the paritys, (su(2N); -) takes the values

{0, +1, —1}, which is not a multiplicative group. Nevertheless, in terms of affine parities, it
yields an identity whose proof is straightforward: the two expressions are equal to +1 when
p = (ay,ay,...,ay) E inthe alcoveP!, (su (2N + 1)) and they transform the same way under
the affine Weyl grouW, (su(2N + 1)). At this level of generality, these identities seem to be
specific to theA; series, even if other relations can be found. For instance;it® parity for

a general weight is the product of fowr (3) parities, while aG, parity is the product of two
su(3) parities.
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